skika.data.stream_generator#

Classes

RecurrentDriftStream([generator, ...])

Generates a stream with recurrent concept drifts.

class skika.data.stream_generator.RecurrentDriftStream(generator='agrawal', stable_period=3000, position=3000, concepts=[4, 0, 8], width=1, lam=1.0, has_noise=False, all_concepts=[4, 0, 8, 6, 2, 1, 3, 5, 7, 9], concept_shift_step=- 1, concept_shift_sample_intervals=[200000, 250000, 300000], stable_period_lam=- 1, stable_period_start=1000, stable_period_base=200, stable_period_logger=None, random_state=0)#

Generates a stream with recurrent concept drifts.

Parameters

generator – a stream generator

property feature_names#

Retrieve the names of the features.

Returns

names of the features

Return type

list

get_data_info()#

Retrieves minimum information from the stream

Used by evaluator methods to id the stream.

The default format is: ‘Stream name - n_targets, n_classes, n_features’.

Returns

Stream data information

Return type

string

get_info()#

Collects and returns the information about the configuration of the estimator

Returns

Configuration of the estimator.

Return type

string

get_params(deep=True)#

Get parameters for this estimator.

Parameters

deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

params – Parameter names mapped to their values.

Return type

mapping of string to any

has_more_samples()#

Checks if stream has more samples.

Returns

True if stream has more samples.

Return type

Boolean

is_restartable()#

Determine if the stream is restartable. :returns: True if stream is restartable. :rtype: Boolean

last_sample()#

Retrieves last batch_size samples in the stream.

Returns

A numpy.ndarray of shape (batch_size, n_features) and an array-like of shape (batch_size, n_targets), representing the next batch_size samples.

Return type

tuple or tuple list

property n_cat_features#

Retrieve the number of integer features.

Returns

The number of integer features in the stream.

Return type

int

property n_features#

Retrieve the number of features.

Returns

The total number of features.

Return type

int

property n_num_features#

Retrieve the number of numerical features.

Returns

The number of numerical features in the stream.

Return type

int

n_remaining_samples()#

Returns the estimated number of remaining samples.

Returns

Remaining number of samples. -1 if infinite (e.g. generator)

Return type

int

property n_targets#

Retrieve the number of targets

Returns

the number of targets in the stream.

Return type

int

next_sample(batch_size=1)#

Returns the next batch_size samples.

Parameters

batch_size (int) – The number of samples to return.

Returns

Return a tuple with the features matrix for the batch_size samples that were requested.

Return type

tuple or tuple list

prepare_for_use()#

Prepares the stream for use.

Notes

This functions should always be called after the stream initialization.

reset()#

Resets the estimator to its initial state.

Return type

self

restart()#

Restart the stream.

set_params(**params)#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Return type

self

property target_names#

Retrieve the names of the targets

Returns

the names of the targets in the stream.

Return type

list

property target_values#

Retrieve all target_values in the stream for each target.

Returns

list of lists of all target_values for each target

Return type

list