skika.data.stream_generator_redundancy_drift#
Classes
|
Stream generator with change in number of redundant features |
- class skika.data.stream_generator_redundancy_drift.StreamGeneratorRedund(base_stream=RandomRBFGeneratorRedund(model_random_state=None, n_centroids=50, n_classes=2, n_features=30, noise_percentage=0.0, perc_redund_feature=None, sample_random_state=None), random_state=None, n_drifts=10, n_instances=10000)#
Stream generator with change in number of redundant features
Create a stream from RandomRBFRedun or HyperPlanRedun to generate a given number of drifts with a given number of instances. Each concept contains a different number of redundant features (0, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100% of the total number of features).
Drifts are regularly placed every n_instances/n_drifts instances.
- Parameters
base_stream (Stream (Default: RandomRBFRedun)) – The base stream to use.
random_state (int, RandomState instance or None, optional (default=None)) – If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
n_drifts (int (Default: 10)) – Number of drifts to be generated.
n_instances (int (Default: 10000)) – Number of instances to be generated.
Example
>>> # Imports >>> from skika.data.stream_generator_redundancy_drift import StreamGeneratorRedund >>> from skika.data.random_rbf_generator_redund import RandomRBFGeneratorRedund >>> # Set the stream >>> stream = StreamGeneratorRedund(base_stream = RandomRBFGeneratorRedund(n_classes=2, n_features=30, n_centroids=50, noise_percentage = 0.0), random_state=None, n_drifts = 10, n_instances = 10000) >>> stream.prepare_for_use() >>> # Retrieve next sample >>> stream.next_sample() (array([[0.21780997, 0.37810599, 0.24129934, 0.78979064, 0.83463727, 0.90272964, 0.5611584 , 0.58977699, 0.78035701, 0.89178544, 0.55418949, 0.30293076, 0.09691338, 0.75894948, 0.03441104, 0.58977699, 0.75894948, 0.24129934, 0.78979064, 0.83463727, 0.37810599, 0.55418949, 0.75894948, 0.24129934, 0.55418949, 0.78035701, 0.09691338, 0.90272964, 0.83463727, 0.24129934]]), array([1]))
- property feature_names#
Retrieve the names of the features.
- Returns
names of the features
- Return type
list
- get_data_info()#
Retrieves minimum information from the stream
Used by evaluator methods to id the stream.
The default format is: ‘Stream name - n_targets, n_classes, n_features’.
- Returns
Stream data information
- Return type
string
- get_info()#
Collects and returns the information about the configuration of the estimator
- Returns
Configuration of the estimator.
- Return type
string
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters
deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
mapping of string to any
- has_more_samples()#
Checks if stream has more samples. :returns: True if stream has more samples. :rtype: Boolean
- is_restartable()#
Determine if the stream is restartable. :returns: True if stream is restartable. :rtype: Boolean
- last_sample()#
Retrieves last batch_size samples in the stream.
- Returns
A numpy.ndarray of shape (batch_size, n_features) and an array-like of shape (batch_size, n_targets), representing the next batch_size samples.
- Return type
tuple or tuple list
- property n_cat_features#
Retrieve the number of integer features.
- Returns
The number of integer features in the stream.
- Return type
int
- property n_features#
Retrieve the number of features.
- Returns
The total number of features.
- Return type
int
- property n_num_features#
Retrieve the number of numerical features.
- Returns
The number of numerical features in the stream.
- Return type
int
- n_remaining_samples()#
Returns the estimated number of remaining samples.
- Returns
Remaining number of samples. -1 if infinite (e.g. generator)
- Return type
int
- property n_targets#
Retrieve the number of targets
- Returns
the number of targets in the stream.
- Return type
int
- next_sample(batch_size=1)#
Return batch_size samples generated by choosing a centroid at random and randomly offsetting its attributes so that it is placed inside the hypersphere of that centroid.
- Parameters
batch_size (int) – The number of samples to return.
- Returns
Return a tuple with the features matrix and the labels matrix for the batch_size samples that were requested.
- Return type
tuple or tuple list
- property perc_redund_features#
Retrieve the number of redundant features. :returns: The total number of redundant features. :rtype: int
- prepare_for_use()#
Prepares the stream for use. Randomly create the list of redundant numbers of features used for each concept in the stream.
Notes
This functions should always be called after the stream initialization.
- reset()#
Resets the estimator to its initial state.
- Return type
self
- restart()#
Restart the stream.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Return type
self
- property target_names#
Retrieve the names of the targets
- Returns
the names of the targets in the stream.
- Return type
list
- property target_values#
Retrieve all target_values in the stream for each target.
- Returns
list of lists of all target_values for each target
- Return type
list